English

Cos √ X - Mathematics

Advertisements
Advertisements

Question

\[\cos \sqrt{x}\]

Solution

\[ \text{ Let } f(x) = \cos \sqrt{x} \]
\[\text{ Thus, we have }: \]
\[ f(x + h) = \cos \sqrt{x + h}\]
\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\cos \sqrt{x + h} - \cos \sqrt{x}}{h}\]
\[\text{ We know }: \]
\[ \cos C - \cos D = - 2\sin\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{x + h - x}\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{2 \times \left( \sqrt{x + h} + \sqrt{x} \right)\frac{\left( \sqrt{x + h} - \sqrt{x} \right)}{2}}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{\frac{\sqrt{x + h} - \sqrt{x}}{2}} \lim_{h \to 0} \frac{- \sin\left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right)}{\sqrt{x + h} + \sqrt{x}} \]
\[ = 1 \times \frac{- \sin\sqrt{x}}{2\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{\frac{\sqrt{x + h} - \sqrt{x}}{2}} = 1 \right]\]
\[ = \frac{- \sin\sqrt{x}}{2\sqrt{x}}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 5.2 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


k xn


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sin \sqrt{2x}\]


(2x2 + 1) (3x + 2) 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x2 ex log 


xn tan 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


sin2 


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×