Advertisements
Advertisements
Question
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Solution
Let f(x) = `a/x^4 - b/x^2 + cos x`
= `d/dx (a/x^4) - d/dx (b/x^2) + d/dx (cos x)`
= `a d/dx (x^(-4)) - b d/dx (x^(-2)) + d/dx (cos x)`
= `a (-4x^(-5)) - b(-2 x^-3) + (-sin x)` `[d/dx (x^n) = nx^(n - 1) and d/dx (cos x) = -sin x]`
= `(-4a)/x^5 + (2b)/x^3 - sin x`
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
(2x2 + 1) (3x + 2)
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
cos (x + a)
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
(x sin x + cos x ) (ex + x2 log x)
logx2 x
x−4 (3 − 4x−5)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Find the derivative of 2x4 + x.