English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax4=bx2+cosx - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`

Sum

Solution

Let f(x) = `a/x^4 - b/x^2 + cos x`

= `d/dx (a/x^4) - d/dx (b/x^2) + d/dx (cos x)`

= `a d/dx (x^(-4)) - b d/dx (x^(-2)) + d/dx (cos x)`

= `a (-4x^(-5)) - b(-2 x^-3) + (-sin x)`        `[d/dx (x^n) = nx^(n - 1) and d/dx (cos x) = -sin x]`

= `(-4a)/x^5 + (2b)/x^3 - sin x`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 10 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


(2x2 + 1) (3x + 2) 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


(x sin x + cos x ) (ex + x2 log x


logx2 x


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×