मराठी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): ax4=bx2+cosx - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`

बेरीज

उत्तर

Let f(x) = `a/x^4 - b/x^2 + cos x`

= `d/dx (a/x^4) - d/dx (b/x^2) + d/dx (cos x)`

= `a d/dx (x^(-4)) - b d/dx (x^(-2)) + d/dx (cos x)`

= `a (-4x^(-5)) - b(-2 x^-3) + (-sin x)`        `[d/dx (x^n) = nx^(n - 1) and d/dx (cos x) = -sin x]`

= `(-4a)/x^5 + (2b)/x^3 - sin x`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Miscellaneous Exercise | Q 10 | पृष्ठ ३१७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{x^3}\]


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sin \sqrt{2x}\]


3x + x3 + 33


ex log a + ea long x + ea log a


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin2 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×