मराठी

Find the Derivative of F (X) = X2 − 2 at X = 10 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f (x) = x2 − 2 at x = 10

उत्तर

We have:

\[f'(x) = \lim_{h \to 0} \frac{f(10 + h) - f(10)}{h}\]
\[ = \lim_{h \to 0} \frac{(10 + h )^2 - 2 - ( {10}^2 - 2)}{h}\]
\[ = \lim_{h \to 0} \frac{100 + h^2 + 20h - 2 - 100 + 2}{h}\]
\[ = \lim_{h \to 0} \frac{h^2 + 20h}{h}\]
\[ = \lim_{h \to 0} \frac{h(h + 20)}{h}\]
\[ = \lim_{h \to 0} h + 20\]
\[ = 0 + 20\]
\[ = 20\]

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.1 | Q 2 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 - 1}{x}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


ex log a + ea long x + ea log a


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×