Advertisements
Advertisements
प्रश्न
ex log a + ea long x + ea log a
उत्तर
\[\frac{d}{dx}\left( e^{x \log a} + e^{a \log x} + e^{a \log a} \right)\]
\[ = \frac{d}{dx}\left( e^{x \log a} \right) + \frac{d}{dx}\left( e^{a \log x} \right) + \frac{d}{dx}\left( e^{a \log a} \right)\]
`= \frac{d}{dx}\left( e^\log a^x \right) + \frac{d}{dx}\left( {e^\log x}^a \right) + \frac{d}{dx}\left( e^\log a^a \right)`
`= \frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^a \right) + \frac{d}{dx}\left( a^a \right)`
\[ = a^x \log a + a x^{a - 1} + 0 \]
\[ = a^x \log a + a x^{a - 1}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
\[\frac{1}{\sqrt{x}}\]
(x + 2)3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
log3 x + 3 loge x + 2 tan x
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 sin x
x3 ex
(x3 + x2 + 1) sin x
sin x cos x
logx2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is