मराठी

ex log a + ea long x + ea log a - Mathematics

Advertisements
Advertisements

प्रश्न

ex log a + ea long x + ea log a

उत्तर

\[\frac{d}{dx}\left( e^{x \log a} + e^{a \log x} + e^{a \log a} \right)\]
\[ = \frac{d}{dx}\left( e^{x \log a} \right) + \frac{d}{dx}\left( e^{a \log x} \right) + \frac{d}{dx}\left( e^{a \log a} \right)\]
 `= \frac{d}{dx}\left( e^\log a^x \right) + \frac{d}{dx}\left( {e^\log x}^a \right) + \frac{d}{dx}\left( e^\log a^a \right)`
`= \frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^a \right) + \frac{d}{dx}\left( a^a \right)`
\[ = a^x \log a + a x^{a - 1} + 0 \]
\[ = a^x \log a + a x^{a - 1}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 4 | पृष्ठ ३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


\[\frac{1}{\sqrt{x}}\]


(x + 2)3


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sin \sqrt{2x}\]


x4 − 2 sin x + 3 cos x


 log3 x + 3 loge x + 2 tan x


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x3 sin 


x3 e


(x3 + x2 + 1) sin 


sin x cos x


logx2 x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×