Advertisements
Advertisements
प्रश्न
\[\frac{x}{\sin^n x}\]
उत्तर
\[\text{ Let } u = x; v = \sin^n x\]
\[\text{ Then }, u' = 1; v' = n \sin^{n - 1} x . \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x}{\sin^n x} \right) = \frac{\sin^n x . 1 - x n \sin^{n - 1} x . \cos x}{\left( \sin^n x \right)^2}\]
\[ = \frac{\sin^{n - 1} x\left( \sin x - nx . \cos x \right)}{\sin^{2n} x}\]
\[ = \frac{\sin x - nx . \cos x}{\sin^{2n - \left( n - 1 \right)} x}\]
\[ = \frac{\sin x - nx\cos x}{\sin^{n + 1} x}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) x at x = 1
\[\frac{x + 1}{x + 2}\]
k xn
x2 + x + 3
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
xn loga x
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is