मराठी

2 X + 3 X − 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{2 x^2 + 1}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 \left( x + h \right)^2 + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} - \sqrt{2 x^2 + 1}}{h} \times \frac{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}{\sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \lim_{h \to 0} \frac{2 x^2 + 2 h^2 + 4xh + 1 - 2 x^2 - 1}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{h\left( 2h + 4x \right)}{h\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \lim_{h \to 0} \frac{\left( 2h + 4x \right)}{\left( \sqrt{2 x^2 + 2 h^2 + 4xh + 1} + \sqrt{2 x^2 + 1} \right)}\]
\[ = \frac{4x}{\sqrt{2 x^2 + 1} + \sqrt{2 x^2 + 1}}\]
\[ = \frac{4x}{2\sqrt{2 x^2 + 1}}\]
\[ = \frac{2x}{\sqrt{2 x^2 + 1}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.14 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


\[\frac{x + 1}{x + 2}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


tan (2x + 1) 


 log3 x + 3 loge x + 2 tan x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


cos (x + a)


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×