Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3\left( x + h \right) + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \]
\[ = \lim_{h \to 0} \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} - \sqrt{\sin \left( 3x + 1 \right)}}{h} \times \frac{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}{\sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( 3x + 3h + 1 \right) - \sin \left( 3x + 1 \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[We have:\]
\[ sin C-sin D= 2 cos\left( \frac{C + D}{2} \right)\sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{3x + 3h + 1 + 3x + 1}{2} \right) \sin \left( \frac{3x + 3h + 1 - 3x - 1}{2} \right)}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} \frac{2 \cos \left( \frac{6x + 3h + 2}{2} \right) \sin \frac{3h}{2}}{h \left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)}\]
\[ = \lim_{h \to 0} 2 \cos \left( \frac{6x + 3h + 2}{2} \right) \lim_{h \to 0} \frac{\sin \frac{3h}{2}}{h \times \frac{3}{2}} \times \frac{3}{2} \times \lim_{h \to 0} \frac{1}{\left( \sqrt{\sin \left( 3x + 3h + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)} \right)} \]
\[ = 2 \cos \left( 3x + 1 \right) \times \left( \frac{3}{2} \right) \times \frac{1}{\sqrt{\sin \left( 3x + 1 \right)} + \sqrt{\sin \left( 3x + 1 \right)}}\]
\[ = \frac{3 \cos \left( 3x + 1 \right)}{2\sqrt{\sin \left( 3x + 1 \right)}}\]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
k xn
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\sin \sqrt{2x}\]
x4 − 2 sin x + 3 cos x
3x + x3 + 33
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
xn loga x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
sin2 x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
(ax + b) (a + d)2
\[\frac{x}{1 + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]