मराठी

Tan2 X - Mathematics

Advertisements
Advertisements

प्रश्न

tan2 

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan^2 \left( x + h \right) - \tan^2 x}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \tan \left( x + h \right) + \tan x \right]\left[ \tan \left( x + h \right) - \tan x \right]}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \frac{\sin \left( x + h \right)}{\cos \left( x + h \right)} + \frac{\sin x}{\cos x} \right]\left[ \frac{\sin (x + h)}{\cos (x + h)} - \frac{\sin x}{\cos x} \right]}{h}\]
\[ = \lim_{h \to 0} \frac{\left[ \sin \left( x + h \right) \cos x + \cos \left( x + h \right) \sin x \right]\left[ \sin \left( x + h \right) \cos x - \cos \left( x + h \right) \sin x \right]}{h \cos^2 x \cos^2 \left( x + h \right)}\]
\[ = \lim_{h \to 0} \frac{\left[ \sin \left( 2x + h \right) \right]\left[ \sin h \right]}{h \cos^2 x \cos^2 \left( x + h \right)}\]
\[ = \frac{1}{\cos^2 x} \lim_{h \to 0} \sin \left( 2x + h \right) \lim_{h \to 0} \frac{\sin h}{h} \lim_{h \to 0} \frac{1}{\cos^2 \left( x + h \right)}\]
\[ = \frac{1}{\cos^2 x} \sin \left( 2x \right) \left( 1 \right)\frac{1}{\cos^2 x}\]
\[ = \frac{1}{\cos^2 x} 2 \sin x \cos x \frac{1}{\cos^2 x}\]
\[ = 2 \times \frac{\sin x}{\cos x} \times \frac{1}{\cos^2 x}\]
\[ = 2 \tan x \sec^2 x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 4.1 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{x + 2}{3x + 5}\]


k xn


(x + 2)3


 (x2 + 1) (x − 5)


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

e3x


x ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\sin \sqrt{2x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


(x3 + x2 + 1) sin 


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×