Advertisements
Advertisements
प्रश्न
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
उत्तर
\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \cos \left( x - \frac{\pi}{8} \right) \right) = \lim_{h \to 0} \frac{\cos \left( x + h - \frac{\pi}{8} \right) - \cos \left( x - \frac{\pi}{8} \right)}{h}\]
\[We know:\]
\[\cos C - \cos D = - 2 \sin \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2} \right) \sin \left( \frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = - 2 \lim_{h \to 0} \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = - 2 \sin \left( x - \frac{\pi}{8} \right) \times \frac{1}{2}\]
\[ = - \sin \left( x - \frac{\pi}{8} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
x3 ex cos x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`