मराठी

Differentiate of the Following from First Principle: Cos ( X − π 8 ) - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]

उत्तर

\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \cos \left( x - \frac{\pi}{8} \right) \right) = \lim_{h \to 0} \frac{\cos \left( x + h - \frac{\pi}{8} \right) - \cos \left( x - \frac{\pi}{8} \right)}{h}\]
\[We know:\]
\[\cos C - \cos D = - 2 \sin \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2} \right) \sin \left( \frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = - 2 \lim_{h \to 0} \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = - 2 \sin \left( x - \frac{\pi}{8} \right) \times \frac{1}{2}\]
\[ = - \sin \left( x - \frac{\pi}{8} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 2.08 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\cos \sqrt{x}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


x3 ex cos 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×