मराठी

A X 2 + B X + C P X 2 + Q X + R - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 

उत्तर

\[\text{ Let } u = a x^2 + bx + c; v = p x^2 + qx + r\]
\[\text{ Then }, u' = 2ax + b; v' = 2px + q\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a x^2 + bx + c}{p x^2 + qx + r} \right) = \frac{\left( p x^2 + qx + r \right)\left( 2ax + b \right) - \left( a x^2 + bx + c \right)\left( 2px + q \right)}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{2ap x^3 + 2aq x^2 + 2arx + bp x^2 + bqx + br - 2ap x^3 - 2bp x^2 - 2pcx - aq x^2 - bqx - cq}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{\left( aq - bp \right) x^2 + 2\left( ar - xp \right)x + br - cq}{\left( p x^2 + qx + r \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 5 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of (x) = tan x at x = 0 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


 x2 + x + 3


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


cos (x + a)


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 e


x2 ex log 


sin x cos x


(x sin x + cos x) (x cos x − sin x


(x sin x + cos x ) (ex + x2 log x


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×