मराठी

I F Y = √ X a + √ a X , Prove that 2 X Y D Y D X = ( X a − a X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  

उत्तर

\[y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}} = \frac{1}{\sqrt{a}} x^\frac{1}{2} + \sqrt{a} x^\frac{- 1}{2} \]
\[\frac{dy}{dx} = \frac{1}{\sqrt{a}}\frac{1}{2} x^\frac{- 1}{2} + \sqrt{a}\left( \frac{- 1}{2} \right) x^\frac{- 3}{2} \]
\[LHS = 2xy \frac{dy}{dx}\]
\[ = 2x \left( \frac{1}{\sqrt{a}} x^\frac{1}{2} + \sqrt{a} x^\frac{- 1}{2} \right)\left( \frac{1}{\sqrt{a}}\frac{1}{2} x^\frac{- 1}{2} + \sqrt{a}\left( \frac{- 1}{2} \right) x^\frac{- 3}{2} \right)\]
\[ = 2x\left( \frac{1}{2a} - \frac{1}{2x} + \frac{1}{2x} - \frac{a}{2 x^2} \right)\]
\[ = 2x\left( \frac{1}{2a} - \frac{a}{2 x^2} \right)\]
\[ = \left( \frac{x}{a} - \frac{a}{x} \right)\]
\[ = RHS \]
\[\text{ Hence, proved } . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 22 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate of the following from first principle:

(−x)−1


Differentiate of the following from first principle:

 x cos x


tan2 


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


xn tan 


xn loga 


sin2 


x3 ex cos 


x4 (3 − 4x−5)


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×