मराठी

Xn Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

xn tan 

उत्तर

\[\text{ Let } u = x^n ; v = \tan x\]
\[\text{ Then }, u' = n x^{n - 1} ; v' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^n \tan x \right) = x^n \sec^2 x + \tan x\left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \left( x \sec^2 x + n \tan x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 4 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(ax + b)n (cx d)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×