Advertisements
Advertisements
प्रश्न
xn tan x
उत्तर
\[\text{ Let } u = x^n ; v = \tan x\]
\[\text{ Then }, u' = n x^{n - 1} ; v' = \sec^2 x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^n \tan x \right) = x^n \sec^2 x + \tan x\left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \left( x \sec^2 x + n \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
\[e^x \log \sqrt{x} \tan x\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
(ax + b)n (cx + d)n
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x}{1 + \tan x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.