मराठी

X 2 Cos π 4 Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 

उत्तर

\[\frac{x^2 \cos \frac{\pi}{4}}{\sin x} = x^2 \cos \frac{\pi}{4} cosec x\]
\[\text{ Let } u = x^2 ; v = \cos \frac{\pi}{4}; w = cosec x\]
\[\text{ Then }, u' = 2x; v' = 0; w' = - cosec x \cot x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 \cos \frac{\pi}{4} cosec x \right) = 2x \cos \frac{\pi}{4}cosec x + x^2 . 0 . cosec x + x^2 \cos \frac{\pi}{4}\left( - \cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( 2x cosec x - x^2 cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( \frac{2x}{\sin x} - x^2 \frac{\cot x}{\sin x} \right)\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 19 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = 3x at x = 2 


\[\frac{x^2 - 1}{x}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle: 

− x


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

sin x + cos x


\[\sin \sqrt{2x}\]


3x + x3 + 33


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


x3 e


x2 ex log 


(x3 + x2 + 1) sin 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x ) (ex + x2 log x


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


x5 (3 − 6x−9


(ax + b)n (cx d)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of 2x4 + x.


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×