Advertisements
Advertisements
प्रश्न
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
उत्तर
\[\frac{x^2 \cos \frac{\pi}{4}}{\sin x} = x^2 \cos \frac{\pi}{4} cosec x\]
\[\text{ Let } u = x^2 ; v = \cos \frac{\pi}{4}; w = cosec x\]
\[\text{ Then }, u' = 2x; v' = 0; w' = - cosec x \cot x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 \cos \frac{\pi}{4} cosec x \right) = 2x \cos \frac{\pi}{4}cosec x + x^2 . 0 . cosec x + x^2 \cos \frac{\pi}{4}\left( - \cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( 2x cosec x - x^2 cosec x \cot x \right)\]
\[ = \cos \frac{\pi}{4}\left( \frac{2x}{\sin x} - x^2 \frac{\cot x}{\sin x} \right)\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
\[\frac{x^2 - 1}{x}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
sin x + cos x
\[\sin \sqrt{2x}\]
3x + x3 + 33
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
2 sec x + 3 cot x − 4 tan x
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
x3 ex
x2 ex log x
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x ) (ex + x2 log x)
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
x5 (3 − 6x−9)
(ax + b)n (cx + d)n
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.