मराठी

X2 + X + 3 - Mathematics

Advertisements
Advertisements

प्रश्न

 x2 + x + 3

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 + x + h + 3 - \left( x^2 + x + 3 \right)}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 + h^2 + 2xh + x + h + 3 - x^2 - x - 3}{h}\]
\[ = \lim_{h \to 0} \frac{h^2 + 2xh + h}{h}\]
\[ = \lim_{h \to 0} \frac{h(h + 2x + 1)}{h}\]
\[ = \lim_{h \to 0} h + 2x + 1\]
\[ = 0 + 2x + 1\]
\[ = 2x + 1\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.1 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = 3x at x = 2 


\[\frac{x + 2}{3x + 5}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[3^{x^2}\]


 tan 2


\[\cos \sqrt{x}\]


3x + x3 + 33


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x3 e


xn loga 


(x3 + x2 + 1) sin 


(ax + b) (a + d)2


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×