Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
पर्याय
cos 9
sin 9
0
1
उत्तर
\[y = \frac{\sin\left( x + 9 \right)}{\cos x}\]
Differentiating both sides with respect to x, we get
\[ = \frac{\cos x \times \cos\left( x + 9 \right) - \sin\left( x + 9 \right) \times \left( - \sin x \right)}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 \right)\cos x + \sin\left( x + 9 \right)\sin x}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 - x \right)}{\cos^2 x}\]
\[ = \frac{\cos9}{\cos^2 x}\]
\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{\cos9}{\cos^2 0} = \cos9\]
Thus, \[\frac{dy}{dx}\] at x = 0 is cos 9.
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x + 2)3
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
xn tan x
xn loga x
x2 sin x log x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)