मराठी

Mark the Correct Alternative in of the Following: If Y = Sin ( X + 9 ) Cos X Then D Y D X at X = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 

पर्याय

  •  cos 9     

  • sin 9   

  •  0     

  • 1

MCQ

उत्तर

\[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{\cos x \times \frac{d}{dx}\sin\left( x + 9 \right) - \sin\left( x + 9 \right) \times \frac{d}{dx}\cos x}{\cos^2 x} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\cos x \times \cos\left( x + 9 \right) - \sin\left( x + 9 \right) \times \left( - \sin x \right)}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 \right)\cos x + \sin\left( x + 9 \right)\sin x}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 - x \right)}{\cos^2 x}\]
\[ = \frac{\cos9}{\cos^2 x}\]
Putting x = 0, we get 

\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{\cos9}{\cos^2 0} = \cos9\] 

Thus, \[\frac{dy}{dx}\]  at x = 0 is cos 9.

Hence, the correct answer is option (a).

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.7 | Q 10 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


(x + 2)3


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


xn tan 


xn loga 


x2 sin x log 


x3 ex cos 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Find the derivative of 2x4 + x.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×