Advertisements
Advertisements
प्रश्न
x ex
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( x e^x \right) = \lim_{h \to 0} \frac{(x + h ) e^{(x + h)} - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{(x + h) e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h + h e^x e^h - x e^x}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x e^h - x e^x}{h} + \lim_{h \to 0} \frac{h e^x e^h}{h}\]
\[ = \lim_{h \to 0} \frac{x e^x \left( e^h - 1 \right)}{h} + \lim_{h \to 0} e^x e^h \]
\[ = x e^x \left( 1 \right) + e^x \left( e^0 \right)\]
\[ = x e^x + e^x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\cos \sqrt{x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
2 sec x + 3 cot x − 4 tan x
cos (x + a)
xn loga x
(x3 + x2 + 1) sin x
x2 sin x log x
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x + \cos x}{\tan x}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of f(x) = tan(ax + b), by first principle.
(ax2 + cot x)(p + q cos x)
`(a + b sin x)/(c + d cos x)`