Advertisements
Advertisements
प्रश्न
\[\frac{e^x - \tan x}{\cot x - x^n}\]
उत्तर
\[\text{ Let } u = e^x - \tan x; v = \cot x - x^n \]
\[\text{ Then }, u' = e^x - \sec^2 x; v' = - \cos e c^2 x - n x^{n - 1} \]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x - \tan x}{cot x - x^n} \right) = \frac{\left( \cot x - x^n \right)\left( e^x - \sec^2 x \right) - \left( e^x - \tan x \right)\left( - \cos e c^2 x - n x^{n - 1} \right)}{\left( \cot x - x^n \right)^2}\]
\[ = \frac{\left( \cot x - x^n \right)\left( e^x - \sec^2 x \right) + \left( e^x - \tan x \right)\left( \cos e c^2 x + n x^{n - 1} \right)}{\left( \cot x - x^n \right)^2}\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 3x at x = 2
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
tan (2x + 1)
\[\tan \sqrt{x}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.