मराठी

X + 1 X + 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x + 1}{x + 2}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 1}{x + h + 2} - \frac{x + 1}{x + 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 1 \right)\left( x + 2 \right) - \left( x + h + 2 \right)\left( x + 1 \right)}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{x^2 + 2x + hx + 2h + x + 2 - x^2 - x - hx - h - 2x - 2}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{1}{\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 0 + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 2 \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 1.06 | पृष्ठ २५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


 tan 2


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


x2 ex log 


\[e^x \log \sqrt{x} \tan x\] 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×