Advertisements
Advertisements
प्रश्न
\[\frac{x + 1}{x + 2}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 1}{x + h + 2} - \frac{x + 1}{x + 2}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 1 \right)\left( x + 2 \right) - \left( x + h + 2 \right)\left( x + 1 \right)}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{x^2 + 2x + hx + 2h + x + 2 - x^2 - x - hx - h - 2x - 2}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{h}{h\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{1}{\left( x + h + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 0 + 2 \right)\left( x + 2 \right)}\]
\[ = \frac{1}{\left( x + 2 \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
tan 2x
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x2 ex log x
\[e^x \log \sqrt{x} \tan x\]
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−4 (3 − 4x−5)
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
Find the derivative of f(x) = tan(ax + b), by first principle.