मराठी

Find the Derivative of the Following Function at the Indicated Point: Sin X at X = π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 

उत्तर

\[\left( i \right) \text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{sin\left( \frac{\pi}{2} + h \right) - sin\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{cos h - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.1 | Q 7.1 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function at the indicated point:


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


(2x2 + 1) (3x + 2) 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin x cos x


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×