मराठी

Differentiate Each of the Following from First Principle: E √ 2 X - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^\sqrt{2x} \right) = \lim_{h \to 0} \frac{e^\sqrt{2(x + h)} - e^\sqrt{2x}}{h}\]
\[ = 2 \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - e^\sqrt{2x}}{2x + 2h - 2x}\]
\[ = 2 \lim_{h \to 0} \frac{e^\sqrt{2x} \left( e^\sqrt{2x + 2h} - \sqrt{2x} - 1 \right)}{\left( \sqrt{2x + 2h} \right)^2 - \left( \sqrt{2x} \right)^2}\]
\[ = 2 e^\sqrt{2x} \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - \sqrt{2x} - 1}{\left( \sqrt{2x + 2h} - \sqrt{2x} \right)\left( \sqrt{2x + 2h} + \sqrt{2x} \right)}\]
\[ = 2 e^\sqrt{2x} \lim_{h \to 0} \frac{e^\sqrt{2x + 2h} - \sqrt{2x} - 1}{\left( \sqrt{2x + 2h} - \sqrt{2x} \right)} \lim_{h \to 0} \frac{1}{\left( \sqrt{2x + 2h} + \sqrt{2x} \right)}\]
\[ = 2 e^\sqrt{2x} \left( 1 \right)\frac{1}{2\sqrt{2x}}\]
\[ = \frac{e^\sqrt{2x}}{\sqrt{2x}}\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.2 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.2 | Q 3.09 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point:


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


(x + 2)3


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

 x sin x


ex log a + ea long x + ea log a


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


xn tan 


(x3 + x2 + 1) sin 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x + \cos x}{\tan x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×