Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^{x^2 + 1} \right) = \lim_{h \to 0} \frac{e^{(x + h )^2 + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + h^2 + 2xh + 1} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} e^{h^2 + 2xh} - e^{x^2 + 1}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{x^2 + 1} \left( e^{h\left( h + 2x \right)} - 1 \right)}{h} \times \frac{\left( h + 2x \right)}{\left( h + 2x \right)}\]
\[ = e^{x^2 + 1} \lim_{h \to 0} \frac{e^{h\left( h + 2x \right)} - 1}{h\left( h + 2x \right)} \lim_{h \to 0} \left( h + 2x \right)\]
\[ = e^{x^2 + 1} \left( 1 \right) \left( 2x \right)\]
\[ = 2x e^{x^2 + 1}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan (2x + 1)
tan 2x
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]