मराठी

P X 2 + Q X + R a X + B - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{p x^2 + qx + r}{ax + b}\]

उत्तर

\[\text{ Let } u = p x^2 + qx + r; v = ax + b\]
\[\text{ Then }, u' = 2px + q; v' = a\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{p x^2 + qx + r}{ax + b} \right) = \frac{\left( ax + b \right)\left( 2px + q \right) - \left( p x^2 + qx + r \right)a}{\left( ax + b \right)^2}\]
\[ = \frac{2ap x^2 + aq x + 2bp x + bq - ap x^2 - aq x - ar}{\left( ax + b \right)^2}\]
\[ = \frac{ap x^2 + 2bp x + bq - ar}{\left( ax + b \right)^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.5 | Q 24 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of 99x at x = 100.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


\[\frac{2}{x}\]


(x + 2)3


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate of the following from first principle:

 x cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x3 sin 


xn tan 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×