Advertisements
Advertisements
प्रश्न
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
उत्तर
\[\frac{d}{dx}\left( \frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2} \right)\]
\[ = \frac{1}{3}\frac{d}{dx}\left( x^3 \right) - 2\frac{d}{dx}\left( x^\frac{1}{2} \right) + 5\frac{d}{dx}\left( x^{- 2} \right)\]
\[ = \frac{1}{3}\left( 3 x^2 \right) - 2 . \frac{1}{2} . x^\frac{- 1}{2} + 5\left( - 2 \right) x^{- 3} \]
\[ = x^2 - x^\frac{- 1}{2} - 10 x^{- 3}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) x at x = 1
\[\frac{1}{x^3}\]
\[\frac{x + 1}{x + 2}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 ex
tan (2x + 1)
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
2 sec x + 3 cot x − 4 tan x
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
x5 (3 − 6x−9)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + \log x}{1 - \log x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)