मराठी

(1 − 2 Tan X) (5 + 4 Sin X) - Mathematics

Advertisements
Advertisements

प्रश्न

(1 − 2 tan x) (5 + 4 sin x)

उत्तर

\[\text{ Let } u = 1 - 2 \tan x; v = 5 + 4 \sin x \]
\[\text{ Then }, u' = - 2 \sec^2 x; v' = 4 \cos x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left[ \left( 1 - 2 \tan x \right)\left( 5 + 4 \sin x \right) \right]\]
\[ = \left( 1 - 2 \tan x \right)\left( 4 \cos x \right) + \left( 5 + 4 \sin x \right)\left( - 2 \sec^2 x \right)\]
\[ = 4 \cos x - 8 \times \frac{\sin x}{\cos x}\cos x - 10 \sec^2 x - 8 \times \frac{\sin x}{\cos^2 x}\]
\[ = 4 \cos x - 8 \sin x - 10 \sec^2 x - 8 \sec x \tan x \]
\[ = 4\left( \cos x - 2 \sin x - \frac{5}{2} \sec^2 x - 2 \sec x \tan x \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.4 | Q 13 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = 99x at x = 100 


\[\frac{x^2 + 1}{x}\]


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan2 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×