मराठी

For the function f(x) = x100100+x9999+...+x22+x+1 Prove that f'(1) = 100 f'(0) - Mathematics

Advertisements
Advertisements

प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)

बेरीज

उत्तर

The given function is

`f(x) = x^100/100 + x^99/99 + ....... + x^2/2 + x + 1`

∴ `d/(dx) f(x) = [(x^100)/100 + (x^99)/99 + .... + (x^2)/2 + x + 1]`

`d/(dx) f(x) = d/(dx)(x^100/100) + d/(dx)(x^99/99) + ... + d/(dx) (x^2/2) + d/(dx)(x) + d/(dx)(1)`

On using theorem `d/(dx)(x^n)` = `nx^(n - 1)`, we obtain

`d/(dx) f(x)` = `(100x^99)/100 + (99^98)/99 + ... + (2x)/2 + 1 + 0`

= x99 + x98 + ..... + x + 1

∴ f'(x) = `x^99 + x^98 + ..... + x + 1`

At x = 0,

f'(0) = 1

At x = 1,

f'(1) = `1^99 + 1^98 + ... + 1 + 1 = [1 + 1 + ... + 1 + 1]_(100 "terms")` = 1 × 100 = 100

Thus, f'(1) = 100 × f'(0)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise 13.2 | Q 5 | पृष्ठ ३१२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (xx at x = 1

 


\[\frac{x^2 - 1}{x}\]


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

 x2 sin x


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


 log3 x + 3 loge x + 2 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


x3 sin 


x3 e


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


sin2 


(2x2 − 3) sin 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b) (a + d)2


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×