मराठी

( X + 5 ) ( 2 X 2 − 1 ) X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{(x + 5)(2 x^2 - 1)}{x}\]

उत्तर

\[\frac{d}{dx}\left( \frac{\left( x + 5 \right)\left( 2 x^2 - 1 \right)}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^3 + 10 x^2 - x - 5}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^3}{x} \right) + \frac{d}{dx}\left( \frac{10 x^2}{x} \right) - \frac{d}{dx}\left( \frac{x}{x} \right) - \frac{d}{dx}\left( \frac{5}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x^2 \right) + 10\frac{d}{dx}\left( x \right) - \frac{d}{dx}\left( 1 \right) - 5\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 2x \right) + 10\left( 1 \right) - 0 - 5\left( - 1 \right) x^{- 2} \]
\[ = 4x + 10 + \frac{5}{x^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 15 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of f (x) = cos x at x = 0


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 1}{x + 2}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


tan (2x + 1) 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


xn tan 


x5 ex + x6 log 


sin2 


(ax + b)n (cx d)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x \tan x}{\sec x + \tan x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×