मराठी

Find the Derivative of F (X) = Cos X at X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f (x) = cos x at x = 0

उत्तर

We have: 

\[f'(x) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{f(h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - \cos0}{h}\]
\[ = \lim_{h \to 0} \frac{\cosh - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ = {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.1 | Q 5 | पृष्ठ ३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{x}}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


\[\tan \sqrt{x}\]


3x + x3 + 33


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

sin x cos x


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×