मराठी

A+bsinxc+dcosx - Mathematics

Advertisements
Advertisements

प्रश्न

`(a + b sin x)/(c + d cos x)`

बेरीज

उत्तर

`d/(dx) ((a + b sin x)/(c + d cos x))`

= `((c + d cos x) * d/(dx) (a + b sin x) - (a + b sin x) d/(dx) (c + d + cos x))/(c + d cos x)^2`

= `((c + d cos x) (b cos x) - (a + b sin x)(- d sin x))/(c + d cos x)^2`  .....[Using quotient rule]

= `(cb cos x + bd cos^2x + ad sin x + bd sin^2x)/(c + d cos x)^2`

= `(cb cos x + ad sin x + bd (cos^2x + sin^2x))/(c + d cos x)^2`

= `(cb cos x + ad sin x + bd)/(c + d cos x)^2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Limits and Derivatives - Exercise [पृष्ठ २४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 13 Limits and Derivatives
Exercise | Q 37 | पृष्ठ २४१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of x–3 (5 + 3x).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


 x2 + x + 3


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


3x + x3 + 33


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


sin x cos x


x3 ex cos 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×