Advertisements
Advertisements
प्रश्न
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
उत्तर
\[\text{ Using the definition of derivative, we have }:\]
\[ \lim_{x \to c} \frac{f\left( x \right) - f\left( x \right)}{x - c} = f'\left( c \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
sin2 x
x5 (3 − 6x−9)
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{1}{a x^2 + bx + c}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)