मराठी

A Cos X + B Sin X + C Sin X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{a \cos x + b \sin x + c}{\sin x}\]

उत्तर

\[\frac{d}{dx}\left( \frac{a \cos x + b \sin x + c}{\sin x} \right)\]
\[ = \frac{d}{dx}\left( \frac{a \cos x}{\sin x} \right) + \frac{d}{dx}\left( \frac{b \sin x}{\sin x} \right) + \frac{d}{dx}\left( \frac{c}{\sin x} \right)\]
\[ = a\frac{d}{dx}\left( cot x \right) + \frac{d}{dx}\left( b \right) + c\frac{d}{dx}\left( \cos ec x \right)\]
\[ = - a \cos e c^2 x + 0 - c \cos ec x cot x\]
\[ = - a \cos e c^2 x - c \cos ec x cot x\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 30 Derivatives
Exercise 30.3 | Q 11 | पृष्ठ ३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


\[\frac{x + 1}{x + 2}\]


(x + 2)3


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


\[\sin \sqrt{2x}\]


(2x2 + 1) (3x + 2) 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 e


(x3 + x2 + 1) sin 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(1 − 2 tan x) (5 + 4 sin x)


x4 (3 − 4x−5)


x−3 (5 + 3x


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×