Advertisements
Advertisements
प्रश्न
Write the derivative of f (x) = 3 |2 + x| at x = −3.
उत्तर
\[\text{ Let } x = -3\]
\[\text{ We know }:\]
\[-3<-2\]
\[\text{ Thus, we have }:\]
\[x<-2\]
\[\text{ It gives } x+2<0.\]
\[ \therefore \left| 2 + x \right| = \left| x + 2 \right| = - \left( x + 2 \right) = - x - 2\]
\[f\left( x \right) = 3 \left| 2 + x \right| = 3\left( - x - 2 \right) = - 3x - 6\]
\[f'\left( x \right) = - 3\frac{d}{dx}\left( x \right) - \frac{d}{dx}\left( 6 \right) = - 3\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
k xn
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
log3 x + 3 loge x + 2 tan x
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
x2 sin x log x
(x sin x + cos x) (x cos x − sin x)
sin2 x
(ax + b) (a + d)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x}{\sin^n x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
(ax2 + cot x)(p + q cos x)
`(a + b sin x)/(c + d cos x)`