English

Write the Derivative of F (X) = 3 |2 + X| at X = −3. - Mathematics

Advertisements
Advertisements

Question

Write the derivative of f (x) = 3 |2 + x| at x = −3. 

Solution

\[\text{ Let } x = -3\]
\[\text{ We know }:\]
\[-3<-2\]
\[\text{ Thus, we have }:\]
\[x<-2\]
\[\text{ It gives } x+2<0.\]
\[ \therefore \left| 2 + x \right| = \left| x + 2 \right| = - \left( x + 2 \right) = - x - 2\]
\[f\left( x \right) = 3 \left| 2 + x \right| = 3\left( - x - 2 \right) = - 3x - 6\]
\[f'\left( x \right) = - 3\frac{d}{dx}\left( x \right) - \frac{d}{dx}\left( 6 \right) = - 3\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 12 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 99x at x = 100 


\[\frac{x + 2}{3x + 5}\]


k xn


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x3 + x2 + 1) sin 


(x sin x + cos x ) (ex + x2 log x


(1 +x2) cos x


\[e^x \log \sqrt{x} \tan x\] 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1}{a x^2 + bx + c}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×