Advertisements
Advertisements
Question
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Solution
\[\text{ Let } x = -3\]
\[\text{ We know }:\]
\[-3<-2\]
\[\text{ Thus, we have }:\]
\[x<-2\]
\[\text{ It gives } x+2<0.\]
\[ \therefore \left| 2 + x \right| = \left| x + 2 \right| = - \left( x + 2 \right) = - x - 2\]
\[f\left( x \right) = 3 \left| 2 + x \right| = 3\left( - x - 2 \right) = - 3x - 6\]
\[f'\left( x \right) = - 3\frac{d}{dx}\left( x \right) - \frac{d}{dx}\left( 6 \right) = - 3\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
\[\frac{x + 2}{3x + 5}\]
k xn
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan2 x
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x3 + x2 + 1) sin x
(x sin x + cos x ) (ex + x2 log x)
(1 +x2) cos x
\[e^x \log \sqrt{x} \tan x\]
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1}{a x^2 + bx + c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is