English

Differentiate Each of the Following from First Principle: E−X - Mathematics

Advertisements
Advertisements

Question

Differentiate each of the following from first principle:

ex

Solution

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^x \right) = \lim_{h \to 0} \frac{e^{- (x + h)} - e^{- x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{- x} e^{- h} - e^{- x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{- x} \left( e^{- h} - 1 \right)}{h}\]
\[ = - e^{- x} \lim_{h \to 0} \frac{e^{- h} - 1}{- h}\]
\[ = - e^{- x} \left( 1 \right)\]
\[ = - e^{- x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 2.01 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


\[\frac{1}{x^3}\]


\[\frac{x^2 + 1}{x}\]


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\tan \sqrt{x}\] 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

sin x cos x


(x sin x + cos x ) (ex + x2 log x


sin2 


logx2 x


x4 (5 sin x − 3 cos x)


(2x2 − 3) sin 


x5 (3 − 6x−9


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×