Advertisements
Advertisements
Question
x5 (3 − 6x−9)
Solution
\[\text{ Let } u = x^5 ; v = \left( 3 - 6 x^{- 9} \right)\]
\[\text{ Then }, u' = 5 x^4 ; v' = 54 x^{- 10} \]
\[\text{ Using theproduct rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^5 \left( 3 - 6 x^{- 9} \right) \right] = x^5 \left( 54 x^{- 10} \right) + \left( 3 - 6 x^{- 9} \right)\left( 5 x^4 \right)\]
\[ = 54 x^{- 5} + 15 x^4 - 30 x^{- 5} \]
\[ = 15 x^4 + 24 x^{- 5}\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
2 sec x + 3 cot x − 4 tan x
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
x−3 (5 + 3x)
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of f(x) = tan(ax + b), by first principle.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.