English

Find the Derivative of the Following Function at the Indicated Point: Sin X at X = π 2 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 

Solution

\[\left( i \right) \text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{sin\left( \frac{\pi}{2} + h \right) - sin\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{cos h - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.1 [Page 3]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.1 | Q 7.1 | Page 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{1}{\sqrt{3 - x}}\]


x ex


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\cos \sqrt{x}\]


3x + x3 + 33


ex log a + ea long x + ea log a


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


x3 sin 


x5 ex + x6 log 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b) (a + d)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×