Advertisements
Advertisements
Question
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Solution
\[\left( i \right) \text{ We have }: \]
\[f'\left( \frac{\pi}{2} \right) = \lim_{h \to 0} \frac{f\left( \frac{\pi}{2} + h \right) - f\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{sin\left( \frac{\pi}{2} + h \right) - sin\left( \frac{\pi}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{cos h - 1}{h}\]
\[ {= \lim}_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{h}\]
\[ {= \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}}}_{} \times \frac{h}{4}\]
\[ {= \lim_{h \to 0} - 1}_{} \times \frac{h}{2}\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
x ex
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\cos \sqrt{x}\]
3x + x3 + 33
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
x3 sin x
x5 ex + x6 log x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to