English

2 X − 1 X 2 + 1 - Mathematics

Advertisements
Advertisements

Question

\[\frac{2x - 1}{x^2 + 1}\] 

Solution

\[\text{ Let u } = 2x - 1; v = x^2 + 1; \]
\[\text{ Then }, u' = 2; v' = 2x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2x - 1}{x^2 + 1} \right) = \frac{\left( x^2 + 1 \right)2 - \left( 2x - 1 \right)2x}{( x^2 + 1 )^2}\]
\[ = \frac{2 x^2 + 2 - 4 x^2 + 2x}{( x^2 + 1 )^2}\]
\[ = \frac{- 2 x^2 + 2x + 2}{( x^2 + 1 )^2}\]
\[ = \frac{2\left( 1 + x - x^2 \right)}{( x^2 + 1 )^2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 2 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 1}{x + 2}\]


 x2 + x + 3


(x + 2)3


 (x2 + 1) (x − 5)


x ex


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


\[\sqrt{\tan x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


 log3 x + 3 loge x + 2 tan x


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x2 ex log 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


x4 (5 sin x − 3 cos x)


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×