English

P If F (X) = Log X 2 Write the Value of F' (X). - Mathematics

Advertisements
Advertisements

Question

If f (x) =  \[\log_{x_2}\]write the value of f' (x). 

Solution

\[f(x) = \log_{x^2} x^3 \]
\[ = \frac{\log x^3}{\log x^2} (\text{ Change of base property })\]
\[ = \frac{3 \log x}{2 \log x}\]
\[ = \frac{3}{2}\]
\[f'\left( x \right) = 0 (\text{ Since } \frac{3}{2} \text{ is a constant })\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 14 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of 99x at x = 100.


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 - 1}{x}\]


\[\frac{x + 1}{x + 2}\]


\[\frac{x + 2}{3x + 5}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\sqrt{\tan x}\]


ex log a + ea long x + ea log a


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


cos (x + a)


x3 sin 


(1 − 2 tan x) (5 + 4 sin x)


(1 +x2) cos x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×