Advertisements
Advertisements
Question
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Solution
\[f(x) = \log_{x^2} x^3 \]
\[ = \frac{\log x^3}{\log x^2} (\text{ Change of base property })\]
\[ = \frac{3 \log x}{2 \log x}\]
\[ = \frac{3}{2}\]
\[f'\left( x \right) = 0 (\text{ Since } \frac{3}{2} \text{ is a constant })\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of 99x at x = 100.
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan 2x
\[\sqrt{\tan x}\]
ex log a + ea long x + ea log a
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
cos (x + a)
x3 sin x
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
(2x2 − 3) sin x
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x + \cos x}{\tan x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]