Advertisements
Advertisements
Question
Find the derivative of `2x - 3/4`
Solution
Let f(x) = `2x - 3/4`
f'(x) = `d/(dx) (2x - 3/4)`
∴ f'(x) = `2 d/dx (x) + d/dx(-3/4)`
= 2.1 + 0
= 2
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (x + 1)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
tan2 x
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
(2x2 + 1) (3x + 2)
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
sin x cos x
x2 sin x log x
(1 +x2) cos x
logx2 x
x3 ex cos x
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.