Advertisements
Advertisements
Question
\[\tan \sqrt{x}\]
Solution
\[text{ Let } f(x) = \tan x^2 \]
\[\text{ Thus, we have }: \]
\[f(x + h) = \tan (x + h )^2 \]
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan (x + h )^2 - \tan x^2}{h}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \left( x + h \right)^2 - x^2 \right)}{h \cos \left( x + h \right)^2 \cos x^2} \left[ \because \tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B} \right]\]
\[ = \lim_{h \to 0} \frac{\sin( x^2 + h^2 + 2hx - x^2 )}{h\cos \left( x + h \right)^2 \cos x^2}\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{h\left( h + 2x \right) \cos \left( x + h \right)^2 \cos x^2} \times \left( h + 2x \right)\]
\[ = \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} \lim_{h \to 0} \frac{h + 2x}{\cos(x + h )^2 \cos x^2} \left[ As \lim_{h \to 0} \frac{\sin(h\left( h + 2x) \right)}{(h\left( h + 2x) \right)} = 1 \right]\]
\[ = 1 \times \frac{2x}{\cos^2 x^2}\]
\[ = 2x \sec^2 x^2 \]
\[\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) x at x = 1
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
\[\sqrt{2 x^2 + 1}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
\[\tan \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
2 sec x + 3 cot x − 4 tan x
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x2 ex log x
xn tan x
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is