English

Find the Derivative of F (X) X at X = 1 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of f (xx at x = 1

 

Solution

We have: 

\[f'(x) = \lim_{h \to 0} \frac{f(1 + h) - f(1)}{h}\]
\[ = \lim_{h \to 0} \frac{1 + h - 1}{h}\]
\[ = \lim_{h \to 0} 1\]
\[ = 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.1 [Page 3]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.1 | Q 4 | Page 3

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


\[\frac{x + 1}{x + 2}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


 tan 2


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


xn loga 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


logx2 x


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×