Advertisements
Advertisements
Question
xn loga x
Solution
\[\text{ Let } u = x^n ; v = \log_a x = \frac{\log x}{\log a}\]
\[\text{ Then }, u' = n x^{n - 1} ; v' = \frac{1}{x \log a}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left( x^n \log_a x \right) = x^n . \frac{1}{x \log a} + \log_a x \left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \frac{1}{\log a} + \log_a x \left( n x^{n - 1} \right)\]
\[ = x^{n - 1} \left( \frac{1}{\log a} + n \log_a x \right)\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
k xn
(x2 + 1) (x − 5)
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan (2x + 1)
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
x2 ex log x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 +x2) cos x
(2x2 − 3) sin x
x5 (3 − 6x−9)
x−3 (5 + 3x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.