English

Mark the Correct Alternative in of the Following: If Y = Sin ( X + 9 ) Cos X Then D Y D X at X = 0 is - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 

Options

  •  cos 9     

  • sin 9   

  •  0     

  • 1

MCQ

Solution

\[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{\cos x \times \frac{d}{dx}\sin\left( x + 9 \right) - \sin\left( x + 9 \right) \times \frac{d}{dx}\cos x}{\cos^2 x} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\cos x \times \cos\left( x + 9 \right) - \sin\left( x + 9 \right) \times \left( - \sin x \right)}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 \right)\cos x + \sin\left( x + 9 \right)\sin x}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 - x \right)}{\cos^2 x}\]
\[ = \frac{\cos9}{\cos^2 x}\]
Putting x = 0, we get 

\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{\cos9}{\cos^2 0} = \cos9\] 

Thus, \[\frac{dy}{dx}\]  at x = 0 is cos 9.

Hence, the correct answer is option (a).

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 10 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Differentiate each of the following from first principle:

ex


x ex


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


tan (2x + 1) 


 tan 2


\[\sin \sqrt{2x}\]


\[\frac{2 x^2 + 3x + 4}{x}\] 


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x2 ex log 


xn loga 


(x3 + x2 + 1) sin 


sin x cos x


(x sin x + cos x ) (ex + x2 log x


(2x2 − 3) sin 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{x}{\sin^n x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×