Advertisements
Advertisements
Question
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Options
cos 9
sin 9
0
1
Solution
\[y = \frac{\sin\left( x + 9 \right)}{\cos x}\]
Differentiating both sides with respect to x, we get
\[ = \frac{\cos x \times \cos\left( x + 9 \right) - \sin\left( x + 9 \right) \times \left( - \sin x \right)}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 \right)\cos x + \sin\left( x + 9 \right)\sin x}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 - x \right)}{\cos^2 x}\]
\[ = \frac{\cos9}{\cos^2 x}\]
\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{\cos9}{\cos^2 0} = \cos9\]
Thus, \[\frac{dy}{dx}\] at x = 0 is cos 9.
Hence, the correct answer is option (a).
APPEARS IN
RELATED QUESTIONS
Find the derivative of x2 – 2 at x = 10.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Differentiate each of the following from first principle:
e−x
x ex
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan2 x
tan (2x + 1)
tan 2x
\[\sin \sqrt{2x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
xn loga x
(x3 + x2 + 1) sin x
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
(2x2 − 3) sin x
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.