Advertisements
Advertisements
Question
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
Solution
\[\text{ Let } u = a x^2 + bx + c; v = p x^2 + qx + r\]
\[\text{ Then }, u' = 2ax + b; v' = 2px + q\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{a x^2 + bx + c}{p x^2 + qx + r} \right) = \frac{\left( p x^2 + qx + r \right)\left( 2ax + b \right) - \left( a x^2 + bx + c \right)\left( 2px + q \right)}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{2ap x^3 + 2aq x^2 + 2arx + bp x^2 + bqx + br - 2ap x^3 - 2bp x^2 - 2pcx - aq x^2 - bqx - cq}{\left( p x^2 + qx + r \right)^2}\]
\[ = \frac{\left( aq - bp \right) x^2 + 2\left( ar - xp \right)x + br - cq}{\left( p x^2 + qx + r \right)^2}\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x2 ex log x
x2 sin x log x
sin2 x
x5 (3 − 6x−9)
x−3 (5 + 3x)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of x2 cosx.
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.