Advertisements
Advertisements
Question
Differentiate each of the following from first principle:
x2 sin x
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h \right)^2 \sin \left( x + h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x^2 + h^2 + 2xh \right)\left( \sin x \cos h + \cos x \sin h \right) - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h - x^2 \sin x}{h}\]
\[ = \lim_{h \to 0} \frac{x^2 \sin x \cos h - x^2 \sin x + x^2 \cos x \sin h + h^2 \sin x \cos h + h^2 \cos x \sin h + 2xh \sin x \cos h + 2xh \cos x \sin h}{h}\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{\cos h - 1}{h} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h\]
\[ = x^2 \sin x \lim_{h \to 0} \frac{- 2 \sin^2 \frac{h}{2}}{\frac{h^2}{4}} \times \frac{h}{4} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \left[ \because \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}}{\frac{h^2}{4}} = \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} \times \lim_{h \to 0} \frac{\sin \frac{h}{2}}{\frac{h}{2}} = 1 \times 1, i . e . 1 \right]\]
\[ = - x^2 \sin x \times \lim_{h \to 0} \frac{h}{2} + x^2 \cos x \lim_{h \to 0} \frac{\sin h}{h} + \sin x \lim_{h \to 0} h \cos h + \cos x \lim_{h \to 0} h \sin h + 2x \sin x \lim_{h \to 0} \cosh + 2x \cos x \lim_{h \to 0} \sin h \]
\[ = - x^2 \sin x \times 0 + x^2 \cos x \left( 1 \right) + \sin x \left( 0 \right) + \cos x \left( 0 \right) + 2x \sin x \left( 1 \right) + 2x \cos x \left( 0 \right)\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = 0 + x^2 \cos x + 2x \sin x\]
\[ = x^2 \cos x + 2x \sin x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = 99x at x = 100
\[\frac{1}{\sqrt{x}}\]
\[\frac{x + 2}{3x + 5}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
2 sec x + 3 cot x − 4 tan x
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x2 ex log x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Find the derivative of 2x4 + x.