English

Find the derivative of 2x4 + x. - Mathematics

Advertisements
Advertisements

Question

Find the derivative of 2x4 + x.

Sum

Solution

Let y = 2x4 + x

Differentiating both sides with respect to x, we get

`(dy)/(dx) = d/(dx) (2x^4) + d/(dx) (x)`

= `2 xx 4x^(4 - 1) + 1x^0`

= `8x^3 + 1`

Therefore, `d/(dx) (2x^4 + x) = 8x^3 + 1`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Solved Examples [Page 231]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Solved Examples | Q 12 | Page 231

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = cos x at x = 0


\[\frac{2}{x}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x^2 - 1}{x}\]


k xn


(x + 2)3


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


tan2 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x3 + x2 + 1) sin 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


sin2 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×