English

1 √ 3 − X - Mathematics

Advertisements
Advertisements

Question

k xn

Solution

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{k \left( x + h \right)^n - k x^n}{h}\]
\[ = \lim_\left( x + h \right) - x \to 0 \frac{k \left[ \left( x + h \right)^n - x^n \right]}{\left( x + h \right) - x}\]
\[\text{ Here, we have }:\]
\[ \lim_{x \to a} \frac{x^m - a^m}{x - a}=m a^{m - 1} \]
\[ = k n x^{n - 1}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 1.08 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of (x) = tan x at x = 0 


\[\frac{2}{x}\]


Differentiate  of the following from first principle:

e3x


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\tan \sqrt{x}\]


x4 − 2 sin x + 3 cos x


ex log a + ea long x + ea log a


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


xn loga 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×