Advertisements
Advertisements
प्रश्न
k xn
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{k \left( x + h \right)^n - k x^n}{h}\]
\[ = \lim_\left( x + h \right) - x \to 0 \frac{k \left[ \left( x + h \right)^n - x^n \right]}{\left( x + h \right) - x}\]
\[\text{ Here, we have }:\]
\[ \lim_{x \to a} \frac{x^m - a^m}{x - a}=m a^{m - 1} \]
\[ = k n x^{n - 1}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{\sqrt{x}}\]
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
(2x2 + 1) (3x + 2)
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x2 ex log x
(1 +x2) cos x
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is