Advertisements
Advertisements
प्रश्न
x2 ex log x
उत्तर
\[\text{ Let } u = x^2 ; v = e^x ; w = \log x\]
\[\text{ Then }, u' = 2x; v' = e^x , w = \frac{1}{x}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 e^x \log x \right) = 2x e^x \log x + x^2 e^x \log x + x^2 e^x \frac{1}{x}\]
\[ = 2x e^x \log x + x^2 e^x \log x + x e^x \]
\[ = x e^x \left( 2 \log x + x \log x + 1 \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sin (x + a)
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
e−x
Differentiate each of the following from first principle:
sin x + cos x
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
tan (2x + 1)
\[\tan \sqrt{x}\]
x4 − 2 sin x + 3 cos x
3x + x3 + 33
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x3 + x2 + 1) sin x
x5 (3 − 6x−9)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of 2x4 + x.
(ax2 + cot x)(p + q cos x)