Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
विकल्प
5050
5049
5051
50051
उत्तर
\[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]
Differentiating both sides with respect to x, we get \[f'\left( x \right) = \frac{d}{dx}\left( x^{100} + x^{99} + . . . + x + 1 \right)\]
\[ = \frac{d}{dx}\left( x^{100} \right) + \frac{d}{dx}\left( x^{99} \right) + . . . + \frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 1 \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1 + 0 \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = 100 x^{99} + 99 x^{98} + . . . + 2x + 1\]
Putting x = 1, we get
\[f'\left( 1 \right) = 100 + 99 + 98 + . . . + 2 + 1\]
\[ = \frac{100\left( 100 + 1 \right)}{2} \left( S_n = \frac{n\left( n + 1 \right)}{2} \right)\]
\[ = 50 \times 101\]
\[ = 5050\]
Hence, the correct answer is option (a).
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\tan \sqrt{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
xn tan x
xn loga x
x3 ex cos x
x5 (3 − 6x−9)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.
Find the derivative of f(x) = tan(ax + b), by first principle.